CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

CHEMBIOCHEM

Supporting Information

for

Optimization of the Pyridyl Nucleobase-Scaffold for Polymerase Recognition and Unnatural Base Pair Replication

Yoshiyuki Hari, Gil Tae Hwang, Aaron M. Leconte, Nicolas Joubert, Michal Hocek, and Floyd E. Romesberg*

Experimental Section

Materials. 2-Bromo-6-methylpyridine 1a, 2-bromo-5-methylpyridine 1b and 2-bromo-4-methylpyridine **1c** were purchased from Aldrich. 5,6-Dimethylpyridin-2-ylamine for the synthesis of 2-bromo-5,6-dimethylpyridine 1d was purchased from Oakwood Product Inc (Scheme S1). 1,1'-Azobis(*N*,*N*-dimethylforamide) was purchased from Tokyo Chemical Industry Co., Ltd. Other reagents and solvents were purchased from Aldrich or Acros and used without further purification. Free nucleosides **7a-d**,^[1] 2-bromo-4,6-dimethylpyridine **1e**,^[2] 2-bromo-4,5-dimethylpyridine **1f**^[3] and 2-bromoquinoline **1g**^[4] were synthesized according to reported procedures. All reactions were carried out with dry glassware under argon atmospheres. Analytical TLC was carried out on Merck 60F₂₅₄ silica gel plate and column chromatography was performed on silica gel 60 (Geduran, 40-63 µm, Merck). ¹H, ¹³C and ³¹P NMR spectra were taken on a Bruker NMR spectrometer (DRX-500 or AMX-400). The ¹H and ¹³C chemical shifts are referenced relative to TMS, and the ³¹P chemical shifts are referenced relative to 85% phosphoric acid in D₂O. High resolution mass spectroscopic data were obtained on an Agilent ESI-TOF mass spectrometer at The Scripps Research Institute Center for Mass Spectrometry

Steady-state kinetics. Primer was 5' radiolabeled with [γ - ³³P]-ATP (GE Healthcare) and T4 polynucleotide kinase (New England Biolabs). Primer-template duplexes were annealed in the reaction buffer by heating to 90 °C and slow cooling to room temperature. Assay conditions include: 40 nM template-primer duplex, 0.30-1.2 nM enzyme (Klenow fragment exo⁻, GE Healthcare), 50 mM Tris buffer (pH 7.5), 10 mM MgCl₂, 1 mM DTT and 50 µg/mL BSA. The reactions were initiated by adding the DNA-enzyme mixture to an equal volume (5 µL) of a 2× triphosphate stock solution, incubated at 25°C for 3-12 min and quenched with 20 µL of loading buffer (95% formamide, 20 mM EDTA). The reaction mixture (8 µL) was then analyzed by 15% polyacrylamide gel electrophoresis. Radioactivity was quantified using a Phosphorimager (Molecular Dynamics) with overnight exposures and the ImageQuant program. The Michaelis-Menten equation was fit to the data using the program Kaleidagraph (Synergy software). The data presented are averages of triplicates.

Heteropair synthesis/extension screen. The primer was 5' radiolabeled with [γ -³³P]-ATP and T4 polynucleotide kinase. Primer- template duplexes were annealed in the reaction buffer by heating to 90 °C and slow cooling to room temperature. Assay conditions were as follows: 40 nM template - primer duplex, 0.6 nM enzyme, 50 mM Tris buffer (pH 7.5), 10 mM MgCl₂, 1 mM DTT and 50 µg/mL BSA. The reactions were initiated by adding the DNA- enzyme mixture to an equal volume (5 µL) of a 2 x triphosphate stock solution resulting in a final concentration of 5, 20, 100 and 500 µM d**X**TP and dCTP, incubated at 25 °C for 5 min, and quenched with 20 µL of loading buffer (95% formamide, 20 mM EDTA). The reaction mixture (8 µL) was then analyzed by 15% polyacrylamide gel electrophoresis. Radioactivity was quantified using a Phosphorimager (Molecular Dynamics) with overnight exposures and the Image-Quant program.

General full-length assay protocol. Primer was 5' radiolabeled as described above. Primer- template duplexes were annealed in the reaction buffer by heating to 90 °C and slow cooling to room temperature. Assay conditions include: 40 nM template-primer duplex, 6 nM enzyme, 50 mM Tris buffer (pH 7.5), 10 mM MgCl₂, 1 mM DTT and 50 μ g/mL BSA. The reactions were initiated by adding the DNA- enzyme mixture to an equal volume (5 μ L) of a 2× triphosphate stock solution containing either 20 μ M of the four natural dNTPs or 20 μ M of dNTP with 500 μ M of d**45DMPy** triphosphate. Reactions were incubated at 25 °C for 3 min, and quenched with 20 μ L of loading buffer (95% formamide, 20 mM EDTA). The reaction mixture (8 μ L) was then analyzed by 15% polyacrylamide gel electrophoresis. Radioactivity was quantified using a Phosphorimager (Molecular Dynamics) with overnight exposures and the Image-Quant program.

Compound Preparation

Scheme S1. Synthesis of 2-pyridine analogs a) *i.* ^{*n*}BuLi, 3,5-di-O-benzyl-2-deoxy-D-erythropentofuranose, THF, -78 °C; *ii*, 1,1´-azobis(*N*,*N*-dimethylformamide), ^{*n*}Bu₃P, benzene, RT; b) 20 % Pd(OH)₂/C, cyclohexene, EtOH, reflux; c) DMTrCl, DMAP, pyridine, RT; d) 2-cyano-ethyl *N*,*N*-diisopropylchlorophosphoramidite, DIPEA, CH₂Cl₂, RT; e) Proton Sponge, POCl₃, ^{*n*}Bu₃N, ^{*n*}Bu₃NPPi, (MeO)₃P, DMF, -10 °C; f) *N*,*N*-Dimethylformamide dimethyl acetal, MeOH, reflux.

Synthesis of 1d. Bromine (1.68 mL, 32.8 mmol) was added dropwise to a solution of 5,6-dimethylpyridin-2-ylamine (2.00 g, 16.4 mmol) in 48 % HBr aq. (9 mL) at -5 °C. After being stirred for 10 min at -5 °C, a solution of NaNO₂ (2.03 g, 29.4 mmol) in H₂O (3 mL) was added while the temperature was kept below 5 °C and furthermore H₂O (10 mL) was added. After being stirred for additional 30 min, the reaction solution was made alkaline by addition of a solution of NaOH (7 g) in H₂O (10 mL). The mixture was extracted with Et₂O and the organic layer was washed with H₂O and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography (6.3% EtOAc in hexane) as an eluent to give **1d** (2.25 g, 74 %). ¹H NMR (500 MHz, CDCl₃): δ 7.25 (d, *J* = 7.5 Hz, 1H; ArH), 7.21 (d, *J* = 7.5 Hz, 1H; ArH), 2.47 (s, 3H; ArCH₃), 2.23 (s, 3H; ArCH₃); ¹³C NMR (125 MHz, CDCl₃): d 158.5, 139.6, 138.0, 130.6, 125.2, 22.3, 18.4; HRMS (*m/z*): [*M* + H]⁺ calcd for C₇H₉Br₁N₁, 185.9913; found, 185.9910.

Synthesis of 7e. To a stirred solution of **7b** (97.4 mg, 0.463 mmol) in MeOH (7.7 mL) was added dropwise *N*,*N*-dimethylformamide dimethyl acetal (0.22 mL, 1.66 mmol) at 0 °C. The solution was refluxed overnight. After the reaction was complete (15 h), The mixture was evaporated and purified by chromatography on a silica gel column (15% MeOH in EtOAc) afforded protected **7e** (120 mg, 98%). ¹H NMR (400 MHz, CDCl₃): δ 8.19 (s, 1H; imine-H), 7.47 (t, *J* = 7.8 Hz, 1H; ArH), 6.85 (d, *J* = 8.0 Hz, 1H; ArH), 6.79 (d, *J* = 7.2 Hz, 1H; ArH), 5.18 (dd, *J* = 6.8, 9.2 Hz, 1H; H-1'), 4.55 (d, *J* = 4.8 Hz; H-3'), 4.14 (br s, 1H; H-4'), 3.89 (dd, *J* = 2.8, 12.0 Hz, 1H; H-5'), 3.66 (dd, *J* = 2.0, 12.0 Hz, 1H; H-5'), 3.07 and 3.04 (2s, 6H; CH₃), 2.46–2.39 (m, 1H; H-2'), 2.25–2.21 (m, 1H; H-2'); ¹³C NMR (101 MHz, CDCl₃): δ 162.5, 159.4, 155.7, 138.4, 117.9, 115.9, 88.7, 80.8, 75.2, 64.0, 40.7, 34.7; HRMS (*m/z*): [*M* + H]⁺ calcd for C₁₃H₂₀N₃O₃, 266.1499; found, 266.1502.

General Procedure for benzyl-protected nucleoside synthesis. A solution of 3,5di-O-benzyl-2-deoxy-D-erythro-pentofuranose^[5] (1 equiv) in THF (0.25 M) was added to the solution prepared from **1** (3.0 equiv) and ^{*n*}BuLi (1.6 M in hexane, 3.0 equiv) in THF (0.38 M), at -78 °C. After being stirred for 1 h at 0 °C, the reaction mixture was quenched by addition of H₂O and extracted with EtOAc. The organic layer was washed with H₂O and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on a silica gel column (50% EtOAc in hexane) to give appropriate compounds, which were dissolved in benzene (42 mM) and 1,1'azobis(*N*,*N*-dimethylformamide) (1.2 equiv) and ^{*n*}Bu₃P (1.2 equiv) were added at RT. After being stirred for 5 h at RT, the mixture was filtered through a pad of Celite and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (20% EtOAc in hexane) to give β -anomer **2** and a-anomer.

Compound 2a. 36% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.51 (t, *J* = 7.6 Hz, 1H; ArH), 7.33-7.24 (m, 11H; ArH), 7.00 (d, *J* = 7.6 Hz, 1H; ArH), 5.23 (dd, *J* = 5.9, 9.8 Hz, 1H; H-1'), 4.59 (d, *J* = 11.9 Hz, 1H; ArCH₂), 4.58 (s, 2H; ArCH₂), 4.51 (d, *J* = 11.9 Hz, 1H; ArCH₂), 4.34-4.32 (m, 1H H-3'), 4.16-4.15 (m, 1H; H-4'), 3.67 (dd, *J* = 4.7, 10.2 Hz, 1H; H-5'), 3.61 (dd, *J* = 5.2, 10.2 Hz, 1H; H-5'), 2.56 (ddd, *J* = 1.1, 5.9, 13.2 Hz, 1H; H-2'), 2.52 (s, 3H; ArCH₃), 2.02 (ddd, *J* = 5.9, 9.8, 13.2 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 161.1, 157.4, 138.2, 138.2, 136.8, 128.3, 128.3, 127.6, 127.5, 121.8, 117.0, 84.0, 81.3, 81.0, 73.4, 71.0, 39.2, 24.4; HRMS (*m/z*): [*M*+H]⁺ calcd for C₂₅H₂₈N₁O₃, 390.2064; found, 390.2075.

Compound 2b. 39% yield. ¹H NMR (500 MHz, CDCl₃): δ 8.35 (s, 1H; ArH), 7.42 (d, *J* = 8.0 Hz, 1H; ArH), 7.39 (d, *J* = 8.0 Hz, 1H; ArH), 7.33-7.26 (m, 10H; ArH), 5.24 (dd, *J* = 5.7, 9.8 Hz, 1H; H-1'), 4.58 (d, *J* = 11.9 Hz, 1H; ArCH₂), 4.57 (s, 2H; ArCH₂), 4.52 (d, *J* = 11.9 Hz, 1H; ArCH₂), 4.34-4.33 (m, 1H; H-3'), 4.16-4.15 (m, 1H; H-4'), 3.65 (dd, *J* = 4.6, 10.0 Hz, 1H; H-5'), 3.59 (dd, *J* = 5.2, 10.0 Hz, 1H; H-5'), 2.53 (dd, *J* = 5.7, 13.1 Hz, 1H; H-2'), 2.28 (s, 3H; ArCH₃), 2.06 (ddd, *J* = 6.0, 9.8, 13.1 Hz, 1H; H-2'); ¹³C NMR (101 MHz, CDCl₃): δ 158.4, 149.1, 138.1, 138.0, 137.0, 131.6, 128.3, 128.2, 127.5, 127.5, 119.8, 83.9, 81.0, 80.9, 73.3, 70.9, 38.9, 18.0; HRMS (*m/z*): [*M* + H]⁺ calcd for C₂₅H₂₈N₁O₃, 390.2064; found, 390.2063.

Compound 2c. 37% yield. ¹H NMR (500 MHz, CDCl₃): δ 8.37 (d, J = 4.9 Hz, 1H; ArH), 7.34-7.27 (m, 11H; ArH), 6.95 (d, J = 4.9 Hz, 1H; ArH), 5.24 (dd, J = 5.9, 9.9 Hz, 1H; H-1'), 4.59 (d, J = 11.9 Hz, 1H; ArCH₂), 4.58 (s, 2H; ArCH₂), 4.51 (d, J = 11.9Hz, 1H; ArCH₂), 4.34-4.33 (m, 1H; H-3'), 4.16-4.15 (m, 1H; H-4'), 3.67 (dd, J = 4.7, 10.1 Hz, 1H; H-5'), 3.61 (dd, J = 5.2, 10.1 Hz, 1H; H-5'), 2.55 (dd, J = 5.9, 13.2 Hz, 1H; H-2'), 2.28 (s, 3H; ArCH₃), 2.05 (ddd, J = 6.0, 9.9, 13.2 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 161.1, 148.5, 147.7, 138.1, 138.0, 128.3, 128.2, 127.5, 127.5, 127.5, 127.4, 123.2, 121.0, 84.0, 81.0, 80.9, 73.3, 70.9, 70.9, 39.0, 21.0; HRMS (*m/z*): [*M* + H]⁺ calcd for C₂₅H₂₈N₁O₃, 390.2064; found, 390.2063.

Compound 2d. 28% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.22 (m, 12H; ArH), 5.23 (dd, J = 5.8, 9.9 Hz, 1H; H-1'), 4.57 (d, J = 12.1 Hz, 1H; ArCH₂), 4.56 (d, J = 11.9 Hz, 1H; ArCH₂), 4.55 (d, J = 12.1 Hz, 1H; ArCH₂), 4.49 (d, J = 11.9 Hz, 1H;

ArCH₂), 4.33-4.31 (m, 1H; H-3'), 4.16-4.14 (m, 1H; H-4'), 3.64 (dd, J = 4.7, 10.2 Hz, 1H; H-5'), 3.59 (dd, J = 5.3, 10.2 Hz, 1H; H-5'), 2.53 (ddd, J = 1.8, 5.8, 13.2 Hz, 1H; H-2'), 2.44 (s, 3H; ArCH₃), 2.19 (s, 3H; ArCH₃), 2.03 (ddd, J = 6.0, 9.9, 13.2 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 158.0, 155.8, 138.0, 137.4, 129.7, 128.1, 128.1, 127.4, 127.3, 127.3, 117.4, 83.8, 81.0, 80.9, 73.2, 70.8, 70.7, 39.0, 22.3, 18.66; HRMS (m/z): [M + H]⁺ calcd for C₂₆H₃₀N₁O₃, 404.2220; found, 404.2227.

Compound 2e. 33% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.31-7.20 (m, 10H; ArH), 7.16 (s, 1H; ArH), 6.76 (s, 1H; ArH), 5.23 (dd, J = 5.9, 9.9 Hz; H-1'), 4.56-4.54 (m, 3H; ArCH₂), 4.47 (d, J = 11.9 Hz, 1H; ArCH₂), 4.34-4.31 (m, 1H; H-3'), 4.15-4.14 (m, 1H; H-4'), 3.65 (dd, J = 4.5, 10.1 Hz, 1H; H-5'), 3.60 (dd, J = 5.1, 10.1 Hz, 1H; H-5'), 2.55 (ddd, J = 1.5, 5.9, 13.2 Hz, 1H; H-2'), 2.45 (s, 3H; ArCH₃), 2.18 (s, 3H; ArCH₃), 2.01 (ddd, J = 6.0, 9.9, 13.2 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 160.5, 156.7, 147.4, 137.9, 137.8, 127.9, 127.1, 127.1, 127.1, 122.4, 117.5, 83.7, 80.9, 80.6, 72.9, 70.6, 70.5, 38.9, 23.8, 20.5; HRMS (m/z): [M + H]⁺ calcd for C₂₆H₃₀N₁O₃: 404.2220; found, 404.2217.

Compound 2f. 36% yield. ¹H NMR (500 MHz, CDCl₃): δ 8.23 (s, 1H; ArH), 7.34-7.23 (m, 11H; ArH), 5.21 (dd, J = 5.8, 10.0 Hz, 1H; H-1'), 4.59 (d, J = 11.9 Hz, 1H; ArCH₂), 4.58 (s, 2H; ArCH₂), 4.51 (d, J = 11.9 Hz, 1H; ArCH₂), 4.36- 4.33 (m, 1H; H-3'), 4.17-4.15 (m, 1H; H-4'), 3.67 (dd, J = 4.7, 10.2 Hz, 1H; H-5'), 3.61 (dd, J = 5.2, 10.2 Hz, 1H; H-5'), 2.52 (ddd, J = 1.8, 5.8, 13.2 Hz, 1H; H-2'), 2.19 (s, 3H; ArCH₃), 2.19 (s, 3H; ArCH₃), 2.06 (ddd, J = 6.1, 10.0, 13.2 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 158.7 148.9, 146.2, 138.1, 138.0, 130.7, 128.2, 127.5, 127.5, 127.4, 127.4, 121.1, 83.9, 81.0, 80.9, 73.2, 70.9, 38.9, 19.1, 16.0; HRMS (*m/z*): [*M* + H]⁺ calcd for C₂₆H₃₀NO₃, 404.2220; found, 404.2229.

Compound 2g. 18% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.97-7.94 (m, 2H; ArH), 7.63 (d, *J* = 7.9 Hz, 1H; ArH), 7.58 (d, *J* = 8.6 Hz, 1H; ArH), 7.56-7.52 (m, 1H; ArH), 7.35 (t, *J* = 7.2 Hz, 1H; ArH), 7.24-7.14 (m, 10H; ArH), 5.35 (dd, *J* = 5.9, 10.0 Hz, 1H; H-1'), 4.49 (d, *J* = 11.9 Hz, 1H; ArCH₂), 4.48 (d, *J* = 12.1 Hz, 1H; ArCH₂), 4.46 (d, *J* = 12.1 Hz, 1H; ArCH₂), 4.41 (d, *J* = 11.9 Hz, 1H; ArCH₂), 4.31-4.28 (m, 1H; H-3'), 4.10-4.08 (m, 1H; H-4'), 3.57 (dd, *J* = 4.5, 10.2 Hz, 1H; H-5'), 3.54 (dd, *J* = 4.9, 10.2 Hz, 1H; H-5'), 2.53 (ddd, *J* = 1.5, 5.9, 13.3 Hz, 1H; H-2'), 2.04 (ddd, *J* = 5.9, 10.0, 13.3 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 162.1, 147.2, 138.0, 138.0, 136.6,

129.3, 128.9, 128.3, 128.2, 127.5, 126.0, 118.3, 84.3, 81.7, 81.0, 73.3, 70.9, 70.9, 39.26; HRMS (m/z): $[M + H]^+$ calcd for C₂₈H₂₈N₁O₃, 426.2064; found, 426.2065.

Generral procedure for debenzylation. A solution of **2** (1 equiv), 20 % $Pd(OH)_2/C$ and cyclohexene (27 equiv) in EtOH (0.15 M) was refluxed for 2 h and after cooling to RT, the mixture was filtered through a filter paper. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (4% MeOH in EtOAc) to give free nucleoside **3**.

Compound 3a. 51% yield. ¹H NMR (500 MHz, CD₃OD): δ 7.68 (t, J = 7.7 Hz, 1H; ArH), 7.33 (d, J = 7.7 Hz, 1H; ArH), 7.17 (d, J = 7.7 Hz, 1H; ArH), 5.18 (dd, J = 6.3, 9.5 Hz, 1H; H-1'), 4.39-4.38 (m, 1H; H-3'), 4.04-4.02 (m, 1H; H-4'), 3.76 (dd, J = 3.9, 11.9 Hz, 1H; H-5'), 3.69 (dd, J = 4.0, 11.9 Hz, 1H; H-5'), 2.50 (s, 3H; ArCH₃), 2.31 (dd, J = 6.3, 13.1 Hz, 1H; H-2'), 2.08 (ddd, J = 5.9, 9.5, 13.1 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CD₃OD): δ 162.4, 159.0, 139.1, 123.9, 119.3, 89.7, 81.8, 74.5, 64.2, 44.1, 23.8; HRMS (m/z): [M + H]⁺ calcd for C₁₁H₁₆N₁O₃, 210.1125; found, 210.1124.

Compound 3b. 89% yield. ¹H NMR (500 MHz, CD₃OD): δ 8.29 (s, 1H; ArH), 7.61 (d, J = 8.0 Hz, 1H; ArH), 7.44 (d, J = 8.0 Hz, 1H; ArH), 5.18 (dd, J = 6.0, 9.8 Hz, 1H; H-1'), 4.38-4.37 (m, 1H; H-3'), 4.03-4.01 (m, 1H; H-4'), 3.73 (dd, J = 4.1, 11.9 Hz, 1H; H-5'), 3.68 (dd, J = 4.5, 11.9 Hz, 1H; H-5'), 2.30 (s, 3H; ArCH₃), 2.30-2.27 (m, 1H; H-2'), 2.04 (ddd, J = 5.9, 9.8, 13.1 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CD₃OD): δ 159.7, 149.7, 139.3, 134.1, 121.9, 89.6, 81.5, 74.2, 64.0, 43.9, 18.1; HRMS (*m/z*): [*M* + H]⁺ calcd for C₁₁H₁₆N₁O₃, 210.1125; found, 210.1124.

Compound 3c. 83% yield. ¹H NMR (500 MHz, CD₃OD): δ 8.31 (d, *J* = 5.0 Hz, 1H; ArH), 7.46 (s, 1H; ArH), 7.14 (d, *J* = 5.0 Hz, 1H; ArH), 5.17 (dd, *J* = 6.0, 9.9 Hz, 1H; H-1'), 4.37-4.36 (m, 1H; H-3'), 4.02-4.00 (m, 1H; H-4'), 3.74 (dd, *J* = 4.1, 11.9 Hz, 1H; H-5'), 3.68 (dd, *J* = 4.5, 11.9 Hz, 1H; H-5'), 2.37 (s, 3H; ArCH₃), 2.30 (ddd, *J* = 1.2, 6.0, 13.1 Hz, 1H; H-2'), 2.03 (ddd, *J* = 5.9, 9.9, 13.1 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CD₃OD): δ 162.5, 150.8, 149.2, 125.0, 123.1, 89.7, 81.7, 74.2, 64.0, 44.0, 21.2; HRMS (*m/z*): [*M* + H]⁺ calcd for C₁₁H₁₆N₁O₃, 210.1125; found, 210.1121.

Compound 3d. 96% yield. ¹H NMR (500 MHz, CD₃OD): δ 7.52 (d, *J* = 7.7 Hz, 1H; ArH), 7.24 (d, *J* = 7.7 Hz, 1H; ArH), 5.16 (dd, *J* = 6.3, 9.6 Hz, 1H; H-1'), 4.40-4.38 (m, 1H; H-3'), 4.03-4.01 (m, 1H; H-4'), 3.77 (dd, *J* = 3.9, 11.9 Hz, 1H; H-5'), 3.68 (dd, *J* = 3.9, 11.9 Hz, 1H; H-5'), 2.46 (s, 3H; ArCH₃), 2.31-2.26 (m, 1H; H-2'), 2.29 (s, 3H; ArCH₃), 2.10 (ddd, J = 5.8, 9.6, 13.2 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CD₃OD): δ 159.5, 157.6, 139.7, 132.5, 119.9, 89.7, 81.7, 74.7, 64.4, 44.2, 21.8, 18.8; HRMS (*m/z*): [*M* + H]⁺ calcd for C₁₂H₁₇N₁O₃, 224.1281; found, 224.1279.

Compound 3e. 80% yield. ¹H NMR (500 MHz, CD₃OD): δ 7.18 (s, 1H; ArH), 7.01 (s, 1H; ArH), 5.14 (dd, *J* = 6.3, 9.6 Hz, 1H; H-1'), 4.39-4.37 (m, 1H; H-3'), 4.03-4.01 (m, 1H; H-4'), 3.77 (dd, *J* = 3.8, 12.0 Hz, 1H; H-5'), 3.69 (dd, *J* = 4.0, 12.0 Hz, 1H; H-5'), 2.45 (s, 3H; ArCH₃), 2.33 (s, 3H; ArCH₃), 2.29 (ddd, *J* = 2.0, 13.2, 6.3, 13.2 Hz, 1H; H-2'), 2.07 (ddd, *J* = 5.9, 9.6, 13.2 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CD₃OD): δ 162.1, 158.7, 150.9, 124.6, 120.2, 89.7, 81.7, 74.5, 64.2, 44.2, 23.5, 21.0; HRMS (*m/z*): [*M* + H]⁺ calcd for C₁₂H₁₈N₁O₃, 224.1281; found, 224.1282.

Compound 3f. 82% yield. ¹H NMR (500 MHz, CD₃OD): δ 8.18 (s, 1H; ArH), 7.35 (s, 1H; ArH), 5.13 (dd, *J* = 6.0, 9.9 Hz, 1H; H-1'), 4.36-4.34 (m, 1H; H-3'), 4.00-3.97 (m, 1H; H-4'), 3.74 (dd, *J* = 4.0, 11.9 Hz, 1H; H-5'), 3.67 (dd, *J* = 4.5, 11.9 Hz, 1H; H-5'), 2.32 (s, 3H; ArCH₃), 2.28-2.24 (m, 1H; H-2'), 2.27 (s, 3H; ArCH₃), 2.03 (ddd, *J* = 6.0, 9.9, 13.1 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CD₃OD): δ 160.1, 149.5, 149.2, 133.2, 123.2, 89.7, 81.6, 74.3, 64.1, 44.0, 19.3, 16.1; HRMS (*m/z*): [*M* + H]⁺ calcd for C₁₂H₁₈N₁O₃, 224.1281; found, 224.1280.

Compound 3g. 60% yield. ¹H NMR (500 MHz, CD₃OD): δ 8.30 (d, *J* = 8.5 Hz, 1H; ArH), 7.98 (d, *J* = 8.5 Hz, 1H; ArH), 7.89 (d, *J* = 7.9 Hz, 1H; ArH), 7.75-7.72 (m, 1H; ArH), 7.71 (d, *J* = 8.5 Hz, 1H; ArH), 7.57-7.54 (m, 1H; ArH), 5.39 (dd, *J* = 6.2, 9.6 Hz, 1H; H-1'), 4.44-4.42 (m, 1H; H-3'), 4.10-4.08 (m, 1H; H-4'), 3.81 (dd, *J* = 4.2, 11.8 Hz, 1H; H-5'), 3.75 (dd, *J* = 1.0, 4.5, 11.8 Hz, 1H; H-5'), 2.41 (ddd, *J* = 2.2, 6.2, 13.1 Hz, 1H; H-2'), 2.16 (ddd, *J* = 5.9, 9.6, 13.1 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CD₃OD): δ 163.9, 148.2, 139.0, 131.2, 129.2, 129.1, 128.8, 127.8, 120.0, 89.8, 82.3, 74.1, 64.0, 44.1; HRMS (*m/z*): [*M* + H]⁺ calcd for C₁₄H₁₆NO₃, 246.1125; found, 246.1124.

General procedure for DMTr-protection. To a solution of free nucleoside **3** or **7** (1 equiv) in anhydrous pyridine was added 4,4'-dimethoxytrityl chloride (1.5 equiv) and 4-(dimethylamino)pyridine (0.5 equiv) and the mixture was stirred overnight under argon at room temperature. The reaction was quenched by addition of MeOH. The mixture was evaporated, the crude product was purified by chromatography on a silica gel column (30-40% EtOAc in hexane).

Compound 4a. 81% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.51 (t, *J* = 7.6 Hz, 1H; ArH), 7.46 (d, *J* = 7.4 Hz, 2H; ArH), 7.36-7.33 (m, 5H; ArH), 7.26 (dd, *J* = 7.3, 7.4 Hz, 2H; ArH), 7.19 (t, *J* = 7.3 Hz, 1H; ArH), 7.01 (d, *J* = 7.6 Hz, 1H; ArH), 6.81 (d, *J* = 8.7 Hz, 4H; ArH), 5.27 (dd, *J* = 6.2, 9.1 Hz, 1H; H-1'), 4.41-4.40 (m, 1H; H-3'), 4.14-4.12 (m, 1H; H-4'), 3.77 (s, 6H; OCH₃), 3.34 (dd, *J* = 4.6, 9.8 Hz, 1H; H-5'), 3.31 (dd, *J* = 5.2, 9.8 Hz, 1H; H-5'), 2.60 (br s, 1H; OH), 2.51 (s, 3H; ArCH₃), 2.41 (ddd, *J* = 2.7, 6.2, 13.0 Hz, 1H; H-2'), 2.15 (ddd, *J* = 5.9, 9.1, 13.0 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 161.3, 158.4, 157.4, 144.9, 136.9, 136.1, 130.1, 128.2, 127.8, 126.7, 121.8, 117.0, 113.1, 86.2, 80.7, 74.1, 64.4, 55.2, 42.4, 24.3; HRMS (*m*/*z*): [*M* + Na]⁺ calcd for C₃₂H₃₃N₁O₅Na₁, 534.2251; found, 534.2256.

Compound 4b. 62% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, J = 0.9 Hz, 1H; ArH), 7.46-7.17 (m, 11H; ArH), 6.81 (d, J = 8.9 Hz, 4H; ArH), 5.28 (dd, J = 6.2, 9.3 Hz, 1H; H-1'), 4.42-4.39 (m, 1H; H-3'), 4.14-4.11 (m, 1H; H-4'), 3.77 (s, 6H; OCH₃), 3.33 (dd, J = 4.6, 9.7 Hz, 1H; H-5'), 3.28 (dd, J = 5.2, 9.7 Hz, 1H; H-5'), 2.73 (br s, 1H; OH), 2.39 (ddd, J = 2.6, 6.2, 13.0 Hz, 1H; H-2'), 2.30 (s, 3H; ArCH₃), 2.16 (ddd, J = 6.1, 9.3, 13.0 Hz, 1H; H-2'); ¹³C NMR (101 MHz, CDCl₃): δ 158.8, 158.4, 149.0, 144.8, 137.2, 136.0, 131.7, 130.1, 128.2, 127.9, 126.7, 119.7, 113.1, 86.2, 86.1, 80.4, 74.1, 64.4, 55.2, 42.2, 18.1; HRMS (m/z): [M + Na]⁺ calcd for C₃₂H₃₃N₁O₅Na₁, 534.2251; found, 534.2249.

Compound 4c. 67% yield. ¹H NMR (500 MHz, CDCl₃): δ 8.34 (d, *J* = 5.0 Hz, 1H; ArH), 7.45 (d, *J* = 7.4 Hz, 2H; ArH), 7.48 (s, 1H; ArH), 7.35 (d, *J* = 8.8 Hz, 2H; ArH), 7.34 (d, *J* = 8.8 Hz, 2H; ArH), 7.25 (dd, *J* = 7.3, 7.4 Hz, 2H; ArH), 7.18 (t, *J* = 7.3 Hz, 1H; ArH), 6.90 (d, *J* = 5.0 Hz, 1H; ArH), 6.80 (d, *J* = 8.8 Hz, 2H; ArH), 6.80 (d, *J* = 8.8 Hz, 2H; ArH), 5.30 (dd, *J* = 6.1, 9.5 Hz, 1H; H-1'), 4.43-4.41 (m, 1H; H-3'), 4.17-4.14 (m, 1H; H-4'), 3.76 (s, 6H; OCH₃), 3.40 (br s, 1H; OH), 3.32 (d, *J* = 4.6 Hz, 2H; H-5'), 2.43 (ddd, *J* = 2.3, 6.1, 13.0 Hz, 1H; H-2'), 2.26 (s, 3H; ArCH₃), 2.18 (ddd, *J* = 5.9, 9.5, 13.0 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 161.6, 158.4, 148.3, 148.0, 144.9, 136.0, 136.0, 130.0, 128.1, 127.7, 126.7, 123.2, 121.0, 113.0, 86.4, 86.1, 80.5, 74.0, 64.4, 55.1, 42.5, 21.1; HRMS (*m*/*z*): [*M* + H]⁺ calcd for C₃₂H₃₄N₁O₅, 512.2431; found, 512.2421.

Compound 4d. 72% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.37 (d, J = 7.4 Hz, 2H; ArH), 7.27-7.24 (m, 5H; ArH), 7.19 (d, J = 7.8 Hz, 1H; ArH), 7.14 (dd, J = 7.3, 7.4 Hz, 2H; ArH), 7.07 (t, J = 7.3 Hz, 1H; ArH), 6.69 (d, J = 8.6 Hz, 4H; ArH), 5.19 (dd, J = 7.3 Hz, 1H; ArH), 6.69 (d, J = 8.6 Hz, 4H; ArH), 5.19 (dd, J = 1.3 Hz, 1H; ArH), 6.69 (d, J = 8.6 Hz, 4H; ArH), 5.19 (dd, J = 1.3 Hz, 1H; ArH), 6.69 (d, J = 8.6 Hz, 4H; ArH), 5.19 (dd, J = 1.3 Hz, 1H; ArH), 6.69 (d, J = 1.3 Hz, 1H; ArH), 5.19 (dd, J = 1.3 Hz, 1H; ArH), 6.69 (d, J = 1.3 Hz, 1H; ArH), 5.19 (dd, J = 1.3 Hz, 1H; ArH), 6.69 (d, J = 1.3 Hz, 1H; ArH), 5.19 (dd, J = 1.3 Hz, 1H; ArH), 6.69 (d, J = 1.3 Hz, 1H; ArH), 6.69 (d, J = 1.3 Hz, 1H; ArH), 5.19 (dd, J = 1.3 Hz, 1H; ArH), 6.69 (d, J = 1.3 Hz, 1H; ArH), 6

6.0, 9.4 Hz, 1H; H-1'), 4.32-4.31 (m, 1H; H-3'), 4.07-4.04 (m, 1H; H-4'), 3.64 (s, 6H; OCH₃), 3.36 (br s, 1H; OH), 3.21 (d, J = 4.2 Hz, 2H; H-5'), 2.33 (s, 3H; ArCH₃), 2.33-2.29 (m, 1H; H-2'), 2.12 (s, 3H; ArCH₃), 2.00 (ddd, J = 5.8, 9.4, 13.0 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 158.5, 158.3, 155.8, 144.8, 137.8, 136.0, 130.0, 129.8, 128.1, 127.6, 126.6, 117.5, 113.0, 86.2, 86.0, 80.4, 73.8, 64.4, 55.1, 42.6, 22.1, 18.74; HRMS (*m/z*): [*M* + H]⁺ calcd for C₃₃H₃₆N₁O₅, 526.2588; found, 526.2586.

Compound 4e. 74% yield. ¹H NMR (500 MHz, CDCl₃): δ 7.46 (d, J = 7.4 Hz, 2H; ArH), 7.36-7.34 (m, 4H; ArH), 7.27-7.18 (m, 4H; ArH), 6.84 (s, 1H; ArH), 6.81 (d, J =7.6 Hz, 4H; ArH), 5.26 (dd, J = 6.1, 9.4 Hz, 1H; H-1'), 4.42-4.41 (m, 1H; H-3'), 4.15-4.12 (m, 1H; H-4'), 3.77 (s, 6H; OCH₃), 3.33 (d, J = 4.6 Hz, 2H; H-5'), 2.67 (br s, 1H; OH), 2.47 (s, 3H; ArCH₃), 2.42 (ddd, J = 2.4, 6.1, 13.1 Hz, 1H; H-2'), 2.22 (s, 3H; ArCH₃), 2.15 (ddd, J = 5.9, 9.4, 13.1 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 161.2, 158.4, 157.0, 148.1, 144.9, 136.1, 136.1, 130.1, 128.2, 127.7, 126.7, 122.8, 117.9, 113.0, 86.3, 86.1, 80.7, 74.0, 64.5, 55.1, 42.8, 24.0, 21.0; HRMS (*m/z*): [*M* + H]⁺ calcd for C₃₃H₃₆N₁O₅, 526.2588; found, 526.2585.

Compound 4f. 89% yield. ¹H NMR (500 MHz, CDCl₃): δ 8.15 (s, 1H; ArH), 7.38 (d, *J* = 7.5 Hz, 2H; ArH), 7.28-7.17 (m, 7H; ArH), 7.12 (t, *J* = 7.2 Hz, 2H; ArH), 6.73 (d, *J* = 8.7 Hz, 2H; ArH), 5.17 (dd, *J* = 6.3, 9.2 Hz, 1H; H-1'), 4.35-4.33 (m, 1H; H-3'), 4.05-4.02 (m, 1H; H-4'), 3.70 (s, 6H; OCH₃), 3.27 (dd, *J* = 4.4, 9.8 Hz, 1H; H-5'), 3.23 (dd, *J* = 5.2, 9.8 Hz, 1H; H-5'), 2.31 (ddd, *J* = 2.5, 6.3, 13.1 Hz, 1H; H-2'), 2.16-2.10 (m, 1H; H-2'), 2.14 (s, 3H; ArCH₃), 2.11 (s, 3H; ArCH₃); ¹³C NMR (126 MHz, CDCl₃): δ 159.1, 158.4, 148.9, 146.4, 144.9, 136.1, 130.8, 130.1, 128.2, 127.8, 126.7, 121.1, 113.1, 86.2, 86.2, 80.5, 74.3, 64.5, 55.2, 42.3, 19.3, 16.1; HRMS (*m/z*): [*M* + Na]⁺ calcd for C₃₃H₃₅N₁O₅Na₁, 548.2407; found, 548.2401.

Compound 4g. 83% yield. ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, *J* = 8.5 Hz, 1H; ArH), 8.04 (d, *J* = 8.5 Hz, 1H; ArH), 7.79 (d, *J* = 8.0 Hz, 1H; ArH), 7.73-7.67 (m, 2H; ArH), 7.53-7.50 (m, 1H; ArH), 7.46 (d, *J* = 7.3 Hz, 2H; ArH), 7.35 (d, *J* = 8.9 Hz, 2H; ArH), 7.34 (d, *J* = 8.9 Hz, 2H; ArH), 7.25 (t, *J* = 7.3 Hz, 2H; ArH), 7.19 (t, *J* = 7.3 Hz, 1H; ArH), 6.80 (d, *J* = 8.6 Hz, 1H; ArH), 6.79 (d, *J* = 8.5 Hz, 1H; ArH), 5.46 (dd, *J* = 6.3, 9.3 Hz, 1H; H-1'), 4.49-4.47 (m, 1H; H-3'), 4.22-4.19 (m, 1H; H-4'), 3.76 (s, 6H; OCH₃), 3.38 (s, 1H; H-5'), 3.37 (s, 1H), 2.51 (ddd, *J* = 2.6, 6.3, 13.1 Hz, 1H; H-2'), 2.34 (ddd, *J* = 6.0, 9.3, 13.1 Hz, 1H; H-2'); ¹³C NMR (126 MHz, CDCl₃): δ 162.3, 158.4, 147.3, 144.8, 136.8, 136.0, 136.0, 130.1, 129.5, 128.9, 128.2, 127.8, 127.6, 127.5, 126.8, 126.2, 118.4, 113.1, 86.5, 86.2, 81.3, 74.2, 64.3, 55.2, 42.5; HRMS (m/z): $[M + H]^+$ calcd for C₃₅H₃₄N₁O₅, 548.2431; found, 548.2424.

Compound 8a. 83% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (t, *J* = 8.0 Hz, 1H; ArH), 7.47 (d, *J* = 8.0 Hz, 2H; ArH), 7.36–7.33 (m, 5H; ArH), 7.30–7.25 (m, 2H; ArH), 7.23–7.18 (m, 1H; ArH), 7.04 (d, *J* = 8.0 Hz, 1H; ArH), 6.82 (d, *J* = 8.0 Hz, 4H; ArH), 5.31 (dd, *J* = 5.8, 9.0 Hz, 1H, H-1'), 4.45–4.41 (m, 1H; H-3'), 4.17–4.14 (m, 1H; H-4'), 3.78 (s, 6H; OCH₃), 3.37–3.30 (m, 2H; H-3'), 2.78 (q, *J* = 5.0 Hz, 2H; CH₂CH₃), 2.46–2.41 (m, 1H; H-2'), 2.19–2.13 (m, 1H; H-2'), 2.02 (t, *J* = 6.0 Hz, 3H; CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 162.6, 161.2, 158.4, 144.8, 137.0, 136.0, 130.1, 128.2, 127.7, 126.7, 120.5, 117.3, 113.0, 86.2, 86.1, 80.7, 74.0, 64.4, 55.1, 42.4, 31.1, 14.0; HRMS (*m/z*): [*M* + H]⁺ calcd for C₃₃H₃₆N₁O₅, 526.2588; found, 526.2592.

Compound 8c. 82% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 7.6 Hz, 2H; ArH), 7.43–7.34 (m, 5H; ArH), 7.29–7.21 (m, 2H; ArH), 7.20–7.15 (m, 1H; ArH), 6.83–6.76 (m, 5H; ArH), 6.26 (d, *J* = 8.0 Hz, 1H; ArH), 5.10 (t, *J* = 7.6 Hz, 1H; H-1'), 4.42–4.40 (m, 1H; H-3'), 4.12–4.07 (m, 1H: H-4'), 3.78 (s, 6H; OCH₃), 3.36–3.26 (m, 2H; H-5'), 2.83 (s, 3H; CH₃), 2.34–2.29 (m, 1H; H-2'), 2.23–2.17 (m, 1H; H-2'); ¹³C NMR (101 MHz, CDCl₃): δ 159.9, 159.1, 158.4, 144.9, 138.2, 136.1, 130.1, 129.2, 127.8, 126.7, 113.1, 109.1, 86.1, 80.6, 74.2, 64.6, 55.2, 41.7, 29.2; HRMS (*m/z*): [*M* + H]⁺ calcd for C₃₂H₃₅N₂O₅, 527.2540; found, 527.2545.

Compound 8d. 69% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 8.4 Hz, 2H; ArH), 7.43–7.36 (m, 5H; ArH), 7.29–7.25 (m, 2H; ArH), 7.20–7.16 (m, 1H; ArH), 6.86– 6.81 (m, 4H; ArH), 6.71 (d, *J* = 7.2 Hz, 1H; ArH), 6.39 (d, *J* = 8.4 Hz, 1H; ArH), 5.13 (t, *J* = 7.4 Hz, 1H; H-1'), 4.48–4.46 (m, 1H; H-3'), 4.15–4.11 (m, 1H: H-4'), 3.78 (s, 6H; OCH₃), 3.40–3.36 (m, 1H; H-5'), 3.28–3.24 (m, 1H; H-5'), 3.00 (s, 6H; CH₃), 2.35– 2.28 (m, 2H; H-2'); ¹³C NMR (101 MHz, CDCl₃): δ 159.2, 158.9, 158.4, 144.9, 137.6, 136.2, 130.1, 128.2, 127.8, 126.7, 113.1, 108.2, 104.5, 86.1, 86.0, 81.0, 74.5, 64.7, 55.2, 41.0, 38.9, 37.8; HRMS (*m*/*z*): [*M* + H]⁺ calcd for C₃₃H₃₇N₂O₅, 541.2697; found, 541.2715.

Compound 8e. 78% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.26 (s, 1H; imine-H), 7.51– 7.48 (m, 3H; ArH), 7.38–7.35 (m, 4H; ArH), 7.26–7.16 (m, 3H; ArH), 7.07 (d, *J* = 7.8 Hz, 1H; ArH), 6.84–6.79 (m, 5H; ArH), 5.18 (t, *J* = 7.6 Hz, 1H; H1'), 4.42–4.40 (m, 1H; H-3'), 4.11–4.06 (m, 1H: H-4'), 3.77 (s, 6H; OCH₃), 3.34–3.27 (m, 2H; H5'), 3.02 and 2.76 (2s, 6H; CH₃), 2.33–2.28 (m, 2H; H-2'); ¹³C NMR (101 MHz, CDCl₃): δ 161.4, 159.7, 158.4, 155.6, 145.0, 138.2, 136.1, 130.1, 128.2, 127.8, 126.7, 116.2, 114.5, 113.1, 86.3, 86.1, 81.0, 74.2, 64.5, 55.2, 40.4, 34.7; HRMS (m/z): [M + H]⁺ calcd for C₃₄H₃₈N₃O₅, 568.2806; found, 568.2807.

General procedure for phosphoramidation. 2-Cyanoethyldiisopropyl chlorophosphoramidite (1.5 equiv) was added dropwise to a solution of **4** or **8** (1 equiv) and diisopropyethylamine (4 equiv) in CH_2CI_2 at room temperature. After the reaction had reached completion (30 min), the mixture was concentrated in vacuo and purified by chromatography through a short column of SiO₂ (13-25% EtOAc in CH_2CI_2) to yield **5** or **9**.

Compound 5a. 88% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.19 (m, 11H; ArH), 7.02 (d, *J* = 7.2 Hz, 1H; ArH), 6.82-6.79 (m, 4H; ArH), 5.24 (dd, 1H, *J* = 6.4, 9.2 Hz, 1H; H-1'), 4.49 (br s, 1H; H-3'), 4.27 (br s, 1H; H-4'), 3.82-3.78 (m, 1H; OCH₂), 3.78 (s, 6H; OCH₃), 3.66-3.54 (m, 3H; NCH, OCH₂, and H-5'), 3.38-3.23 (m, 2H; NCH and H-5'), 2.56 (t, *J* = 6.4 Hz, 1H; CH₂CN), 2.58-2.45 (m, 1H; H-2'), 2.52 (s, 3H; ArCH₃), 2.41 (t, *J* = 6.4 Hz, 1H; CH₂CN), 2.19-2.13 (m, 1H; H-2'), 1.18-1.06 (m, 12H; CHC*H*₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.5, 148.1; HRMS (*m/z*): [*M* + H]⁺ calcd for C₄₁H₅₁N₃O₆P₁, 712.3510; found, 712.3511.

Compound 5b. 88% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.36 (s, 1H; ArH), 7.48-7.19 (m, 11H; ArH), 6.82-6.79 (m, 4H; ArH), 5.25 (dd, J = 5.8, 9.8 Hz, 1H; H-1'), 4.53-4.47 (m, 1H; H-3'), 4.27 (br s, 1H; H-4'), 3.83-3.77 (m, 1H; OCH₂), 3.78 (s, 6H; OCH₃), 3.68-3.55 (m, 3H; NCH, OCH₂, and H-5'), 3.35-3.23 (m, 2H; NCH and H-5'), 2.59 (t, J = 6.8 Hz, 1H; CH₂CN), 2.58-2.45 (m, 1H; H-2'), 2.42 (t, J = 6.8 Hz, 1H; CH₂CN), 2.31 (s, 3H; ArCH₃), 2.20-2.07 (m, 1H; H-2'), 1.18-1.07 (m, 12H; CHCH₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.7, 148.2; HRMS (*m/z*): [*M* + Na]⁺ calcd for C₄₁H₅₀N₃O₆P₁Na₁, 734.3329; found, 734.3334.

Compound 5c. 88% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 4.8 Hz, 1H; ArH), 7.47-7.19 (m, 10H; ArH), 6.99 (d, *J* = 4.8 Hz, 1H; ArH), 6.82-6.79 (m, 4H; ArH), 5.26 (dd, *J* = 6.0, 9.6 Hz, 1H; H-1'), 4.53-4.48 (m, 1H; H-3'), 4.28 (br s, 1H; H-4'), 3.83-3.77 (m, 1H; OCH₂), 3.78 (s, 3H; OCH₃), 3.77 (s, 3H; OCH₃), 3.68-3.56 (m, 3H; NCH, OCH₂, and H-5'), 3.39-3.24 (m, 2H; NCH and H-5'), 2.61-2.47 (m, 1H; H-2'), 2.59 (t, *J* = 6.4 Hz, 1H; CH₂CN), 2.42 (t, *J* = 6.4 Hz, 1H; CH₂CN), 2.28 (s, 3H; ArCH₃), 2.28-2.11 (m, 1H; H-2'), 1.18-1.07 (m, 12H; CHC*H*₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.7, 148.1; HRMS (*m*/*z*): $[M + Na]^+$ calcd for C₄₁H₅₀N₃O₆P₁Na₁, 734.3329; found, 734.3333.

Compound 5d. 91% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.46 (m, 2H; ArH), 7.38-7.18 (m, 9H; ArH), 6.82-6.78 (m, 4H; ArH), 5.22 (dd, *J* = 5.6, 9.6 Hz, 1H; H-1'), 4.51-4.49 (m, 1H; H-3'), 4.26-4.24 (m, 1H; H-4'), 3.83-3.77 (m, 1H; OCH₂), 3.78 (s, 3H; OCH₃), 3.77 (s, 3H; OCH₃), 3.69-3.54 (m, 3H; NCH, OCH₂, and H-5'), 3.37-3.22 (m, 2H; NCH and H-5'), 2.60-2.52 (m, 1H; H-2'), 2.59 (t, *J* = 6.6 Hz, 1H; CH₂CN), 2.46 (s, 3H; ArCH₃), 2.41 (t, *J* = 6.6 Hz, 1H; CH₂CN), 2.25 (s, 3H; ArCH₃), 2.22-2.10 (m, 1H; H-2'), 1.18-1.06 (m, 12H; CHC*H*₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.5, 148.1; HRMS (*m/z*): [*M* + H]⁺ calcd for C₄₂H₅₃N₃O₆P₁, 726.3666; found, 726.3671.

Compound 5e. 86% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.47 (m, 2H; ArH), 7.39-7.34 (m, 4H; ArH), 7.27-7.19 (m, 4H; ArH), 6.89 (s, 1H; ArH), 6.82-6.79 (m, 4H; ArH), 5.22 (dd, *J* = 5.8, 9.8 Hz, 1H; H-1'), 4.53-4.48 (m, 1H; H-3'), 4.26-4.25 (m, 1H; H-4'), 3.85-3.75 (m, 1H; OCH₂), 3.78 (s, 3H; OCH₃), 3.77 (s, 3H; OCH₃), 3.68-3.54 (m, 3H; NCH, OCH₂, and H-5'), 3.40-3.22 (m, 2H; NCH and H-5'), 2.60 (t, *J* = 6.4 Hz, 1H; CH₂CN), 2.60-2.55 (m, 1H; H-2'), 2.48 (s, 3H; ArCH₃), 2.40 (t, *J* = 6.6 Hz, 1H; CH₂CN), 2.22 (s, 3H; ArCH₃), 2.22-2.11 (m, 1H; H-2'), 1.18-1.06 (m, 12H; CHC*H*₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.5, 148.0; HRMS (*m/z*): [*M* + H]⁺ calcd for C₄₂H₅₃N₃O₆P₁, 726.3666; found, 726.3663.

Compound 5f. 90% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (s, 1H; ArH), 7.48-7.20 (m, 10H; ArH), 6.82-6.79 (m, 4H; ArH), 5.22 (dd, J = 5.8, 9.8 Hz, 1H; H-1'), 4.54-4.47 (m, 1H; H-3'), 4.26-4.25 (m, 1H; H-4'), 3.83-3.54 (m, 3H; NCH, OCH₂, and H-5'), 3.79 (s, 3H; OCH₃), 3.78 (s, 3H; OCH₃), 3.44-3.21 (m, 2H; NCH and H-5'), 2.61-2.40 (m, 3H; CH₂CN and ; H-2'), 2.22 (s, 3H; ArCH₃), 2.22-2.10 (m, 1H; H-2'), 2.19 (s, 3H; ArCH₃), 1.18-1.06 (m, 12H; CHC*H*₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.7, 148.1; HRMS (*m/z*): [*M* + H]⁺ calcd for C₄₂H₅₃N₃O₆P₁, 726.3666; found, 726.3663.

Compound 5g. 83% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.13-8.04 (m, 2H; ArH), 7.81-7.68 (m, 3H; ArH), 7.54-7.19 (m, 10H; ArH), 6.81-6.78 (m, 4H; ArH), 5.46 (dd, J = 6.0, 10.0 Hz, 1H; H-1'), 4.58-4.53 (m, 1H; H-3'), 4.34-4.32 (m, 1H; H-4'), 3.85-3.77 (m, 1H; OCH₂), 3.77 (s, 3H; OCH₃), 3.77 (s, 3H; OCH₃), 3.69-3.58 (m, 3H; NCH, OCH₂, and H-5'), 3.44-3.26 (m, 2H; NCH and H-5'), 2.72-2.54 (m, 1H; H-2'), 2.62 (t, J = 6.6 Hz, 1H; CH₂CN), 2.45 (t, J = 6.6 Hz, 1H; CH₂CN), 2.39-2.26 (m, 1H; H-2'),

1.19-1.08 (m, 12H; CHC*H*₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.7, 148.3; HRMS (*m/z*): [*M* + H]⁺ calcd for C₄₄H₅₁N₃O₆P₁, 748.3510; found, 748.3502.

Compound 9a. 92% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.55 (m, 1H; ArH), 7.50–7.47 (m, 2H; ArH), 7.39–7.35 (m, 5H; ArH), 7.30–7.19 (m, 3H; ArH), 7.05 (d, *J* = 7.6 Hz, 1H; ArH), 6.83–6.80 (m, 4H; ArH), 5.27 (dd, *J* = 6.0, 9.6 Hz, 1H; H-1'), 4.54–4.50 (m, 1H; H-3'), 4.29–4.27 (m, 1H: H-4'), 3.80 and 3.79 (2s, 6H; OCH₃), 3.89–3.77 (m, 1H; OCH₂), 3.71–3.55 (m, 3H; OCH₂, NCH, and H-5'), 3.32–3.24 (m, 2H; NCH, and H-5'), 2.71 (q, *J* = 5.0 Hz, 2H; CH₂CH₃), 2.62 (t, *J* = 6.6 Hz, 1H; CH₂CN), 2.58–2.42 (m, 2H; CH₂CN and H-2'), 2.25–2.14 (m, 1H; H-2'), 1.30–1.08 (m, 15H; CH₂CH₃) and CHC*H*₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.4, 148.0; HRMS (*m*/*z*): [*M* + H]⁺ calcd for C₄₂H₅₃N₃O₆P₁, 726.3666; found, 726.3665.

Compound 9c. 75% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.50–7.17 (m, 10H; ArH), 6.85–6.79 (m, 5H; ArH), 6.26 (d, *J* = 8.0 Hz, 1H; ArH), 5.08 (dd, *J* = 5.8, 9.8 Hz, 1H; H-1'), 4.52–4.50 (m, 1H; H-3'), 4.26–4.24 (m, 1H: H-4'), 3.79 (2s, 6H; OCH₃), 3.86–3.77 (m, 1H; OCH₂), 3.72–3.49 (m, 3H; OCH₂, NCH, and H-5'), 3.32–3.16 (m, 2H; NCH, and H-5'), 2.85 (s, 3H; NCH₃), 2.70 (t, *J* = 6.2 Hz, 1H; CH₂CN), 2.61 (t, *J* = 6.6 Hz, 1H; CH₂CN), 2.48–2.44 (m, 1H; H2'), 2.27–2.18 (m, 1H; H2'), 1.37–1.09 (m, 12H; CHC*H*₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.4, 148.0; HRMS (*m/z*): [*M* + H]⁺ calcd for C₄₁H₅₂N₄O₆P₁, 727.3619; found, 727.3620.

Compound 9d. 89% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.21 (m, 10H; ArH), 6.87–6.76 (m, 5H; ArH), 6.41 (d, *J* = 8.4 Hz, 1H; ArH), 5.13 (dd, *J* = 5.8, 9.4 Hz, 1H; H-1'), 4.59–4.56 (m, 1H; H-3'), 4.28–4.27 (m, 1H: H-4'), 3.80 and 3.79 (2s, 6H; OCH₃), 3.90–3.28 (m, 6H; OCH₂, NCH, and H-5'), 3.02 (2s, 6H; NCH₃), 2.61 (t, *J* = 6.4 Hz, 1H; CH₂CN), 2.50–2.31 (m, 3H; CH₂CN and H-2'), 1.21–1.01 (m, 12H; CHC*H*₃); ³¹P NMR (162 MHz, CDCl₃): δ 148.4, 148.0; HRMS (*m/z*): [*M* + H]⁺ calcd for C₄₂H₅₄N₄O₆P₁, 741.3775; found, 741.3769.

Compound 9e. 71% yield. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (s, 1H; imine-H), 7.52–7.49 (m, 3H; ArH), 7.41–7.36 (m, 4H; ArH), 7.25–7.18 (m, 3H; ArH), 7.11 (d, *J* = 8.0 Hz, 1H; ArH), 6.85–6.78 (m, 5H; ArH), 5.18–5.16 (m, 1H; H-1'), 4.53–4.51 (m, 1H; H-3'), 4.20–4.12 (m, 1H: H-4'), 3.77 (s, 6H; OCH₃), 3.83–3.77 (m, 1H; OCH₂), 3.69–3.47 (m, 3H; OCH₂, NCH, and H-5'), 3.40–3.16 (m, 2H; NCH, and H-5'), 3.02 and 2.72 (2s, 6H; NCH₃), 2.77–2.23 (m, 4H; CH₂CN and H-2'), 1.36–1.05 (m, 12H; CHC*H*₃); ³¹P

NMR (162 MHz, CDCl₃): δ 148.2, 147.9; HRMS (*m/z*): [*M* + H]⁺ calcd for C₄₃H₅₅N₅O₆P₁, 768.3884; found, 768.3892.

General procedure for triphosphate synthesis. Proton sponge (1.5 equiv) and the free nucleoside **3** or **7** (1 equiv) were dissolved in trimethyl phosphate (0.3 M) and cooled to -10 °C. POCl₃ (1.5 equiv) was added dropwise, and the purple slurry was stirred at -10 °C for 2 h. Tri-*n*-butylamine (6.2 equiv) was added, followed by a solution of tributylammonium pyrophosphate (5.0 equiv) in DMF (0.5 M). After 5 min, the reaction was quenched by addition of 0.5 M aqueous $Et_3NH_2CO_3$ (20 vol. equiv). The resulting solution lyophilized. Purification by reverse-phase (C18) HPLC (4-35% CH₃CN in 0.1 M $Et_3NH_2CO_3$, pH 7.5) followed by lyophilization afforded **6** or **10** as a white solid. The amidine-protected triphosphates **10e** was dissolved in 1.5 mL of NH₄OH and stirred at room temperature for 15 h. The solution was diluted by addition of 3 mL of aqueous $Et_3NH_2CO_3$ and purified by reverse-phase (C18) HPLC.

Compond 6a. ³¹P NMR (162 MHz, D₂O): δ -8.84 (d, J = 20.6 Hz; γ -P), -10.71 (d, J = 19.9 Hz; α -P), -22.63 (dd, J = 20.6, 19.9 Hz; β -P).

Compond 6b. ³¹P NMR (162 MHz, D₂O): δ -5.90 (d, J = 21.1 Hz; γ -P), -10.56 (d, J = 19.8 Hz; α -P), -22.10 (dd, J = 21.1, 19.8 Hz; β -P).

Compond 6c. ³¹P NMR (162 MHz, D₂O): δ -9.15 (d, *J* = 20.3 Hz; γ -P), -10.65 (d, *J* = 20.3 Hz; α -P), -22.61 (t, *J* = 20.3 Hz; β -P).

Compond 6d. ³¹P NMR (162 MHz, D₂O): δ -7.98 (d, J = 20.6 Hz; γ -P), -10.65 (d, J = 19.9 Hz; α -P), -22.47 (dd, J = 20.6, 19.9 Hz; β -P).

Compond 6e. ³¹P NMR (162 MHz, D₂O): δ -8.84 (d, *J* = 18.8 Hz; γ -P), -10.65 (d, *J* = 20.9 Hz; α -P), -22.61 (dd, *J* = 20.9, 18.8 Hz; β -P).

Compond 6f. ³¹P NMR (162 MHz, D₂O): δ -6.10 (d, J = 20.1 Hz; γ -P), -10.58 (d, J = 19.8 Hz; α -P), -22.12 (dd, J = 20.1, 19.8 Hz; β -P).

Compond 6g.³¹P NMR (162 MHz, D₂O): δ -6.80 (d, *J* = 20.0 Hz; γ -P), -10.61 (d, *J* = 20.0 Hz; α -P), -22.24 (t, *J* = 20.0 Hz; β -P).

Compound 10a. ³¹P NMR (162 MHz, D₂O): δ -6.25 – -6.37 (m; γ -P), -12.60 (d, J = 18.0 Hz; α -P), -24.18 – -24.57 (m; β -P).

Compound 10b. ³¹P NMR (162 MHz, D₂O): δ -6.19 – -6.30 (m; γ-P), -11.76 – -11.91 (m; α-P), -22.31 – -22.49 (m; β-P).

Compound 10c. ³¹P NMR (162 MHz, D₂O): δ -10.21 – -10.52 (m; γ -P), -11.00 (d, *J* = 18.5 Hz; α -P), -22.86 (t, *J* = 19.8 Hz; β -P).

Compound 10d. ³¹P NMR (162 MHz, D₂O): δ -6.37 (d, *J* = 20.9 Hz; γ -P), -10.57 (d, *J* = 19.8 Hz; α -P), -22.11 (t, *J* = 20.7 Hz; β -P).

Synthesis of Oligonucleotides. Oligonucleotides were prepared by the β -cyanoethylphosphoramidite method on controlled pore glass supports (1 µmol) using an Applied Biosystems Inc. 392 DNA/RNA synthesizer as standard method. After automated synthesis, the oligonucleotides were cleaved from the support by concentrated aqueous ammonia for 1 h at room temperature, deprotected by heating at 56 °C for 10 h, and purified by denaturing polyacrylamide gel electrophoresis (12-15%, 8 M urea). The primer oligonucleotides containing unnatural bases at the 3'-end were obtained using Universal Support II or 3'-phosphate CPG, which was treated with alkaline phosphatase after deprotection. The oligonucleotides were purified by PAGE, visualized by UV shadowing and recovered by electroelution. After ethanol precipitation, the concentration of oligonucleotides was determined by UV/vis absorption.

5 ' -dTAATACGACTCACTATAGGGAGA 3 ' -dATTATGCTGAGTGATATCCCTCT (\mathbf{Y}) GCTAGGTTACGGCAGGATCGC							
Ν	Υ	k_{cat} [min ⁻¹]	<i>К</i> м [µМ]	k_{cat}/K_{M} [M ⁻¹ min ⁻¹]			
dA	d3MPy	2.9 ± 0.4	37 ± 5	7.9×10^4			
dC	d3MPy	nd ^[b]	nd ^[b]	$<1.0 \times 10^{3}$			
dG	d3MPy	1.7 ± 0.3	125 ± 13	1.4×10^{4}			
dT	d3MPy	0.75 ± 0.20	133 ± 13	5.7×10^3			
dA	d4MPy	2.6 ± 0.4	32 ± 1	8.1 × 10 ⁴			
dC	d4MPy	nd ^[b]	nd ^[b]	<1.0 × 10 ³			
dG	d4MPy	0.43 ± 0.07	64 ± 4	6.8×10^3			
dT	d4MPy	0.39 ± 0.12	118 ± 15	3.3×10^3			
dA	d 5MPy	9.0 ± 1.5	36 ± 7	2.5 × 10⁵			
dC	d 5MPy	nd ^[b]	nd ^[b]	<1.0 × 10 ³			
dG	d 5MPy	0.47 ± 0.04	68 ± 6	6.9×10^{3}			
dT	d 5MPy	0.39 ± 0.08	142 ± 19	2.8×10^3			
dA	d 34DMPy	0.93 ± 0.17	22 ± 0.3	4.2×10^4			
dC	d 34DMPy	0.36 ± 0.10	217 ± 18	1.6×10^3			
dG	d34DMPy	0.88 ± 0.03	65 ± 0.4	1.4×10^4			
dT	d34DMPy	1.7 ± 0.5	124 ± 21	1.4×10^4			
dA	d35DMPy	1.2 ± 0.1	21 ± 3	5.7 × 10 ⁴			
dC	d35DMPy	nd ^{ıoj}	nd ^{ioj}	<1.0 × 10 ³			
dG	d35DMPy	1.3 ± 0.2	87 ± 4	1.5 × 10 ⁴			
dT	d35DMPy	0.96 ± 0.21	122 ± 3	7.9×10^{3}			
dA	d45DMPy	2.3 ± 0.2	31 ± 2	7.4 × 10 ⁺			
dC	d45DMPy	0.63 ± 0.14	281 ± 16	2.2×10^{3}			
dG	d45DMPy	0.35 ± 0.03	45 ± 8	7.8×10^{3}			
dl		0.79 ± 0.08	167 ± 14	$4.7 \times 10^{\circ}$			
dA		0.47 ± 0.04	25 ± 2	1.9×10^{-1}			
dC		0.27 ± 0.09	133 ± 10	$2.0 \times 10^{\circ}$			
dG		0.31 ± 0.07	69 ± 13	$4.5 \times 10^{\circ}$			
		0.31 ± 0.03	119 ± 7	2.6×10^{4}			
dA	dEPy	1.2 ± 0.3	57 ± 8	2.0×10^{3}			
dC				$<1.0 \times 10^{3}$			
	dEPv	1.3 ± 0.1	174 ± 40	7.3×10			
		1.0 ± 0.2	200 ± 40	3.0×10^{4}			
dC		2.5 ± 0.4	30 ± 7	0.9×10			
dC		10	103 ± 15	1.0×10^{3}			
DU Th	d A Py	0.44 ± 0.00	103 ± 13 110 + 24	1.3×10^{3}			
	d MAP v	0.13 ± 0.03	85 + 7	25×10^4			
dC	d MAP y	nd ^[b]	nd ^[b]	$<10 \times 10^{3}$			
dG	dMAPy	0.10 + 0.02	86 + 18	1.0×10^{3}			
Th	dMAPy	0.10 ± 0.02	223 + 48	1.1×10^3			
dA	dDMAPv	0.92 ± 0.07	62 + 19	1.5×10^4			
dC	dDMAPy	nd ^[b]		$<1.0 \times 10^{3}$			
dG	dDMAPv	nd ^[b]	nd ^[b]	$<1.0 \times 10^{3}$			
Th	dDMAPy	12+02	264 + 56	4.7×10^3			
, ui							

Table S1: Misincorporation rates of natural triphosphates dNTP.[a]

[a] See 'Steady-state kinetics' for details. [b] Reaction was too inefficient for k_{cat} and K_{M} to be determined independently.

25-nt → 24-nt → 23-nt →	-				美朋姓哥		
25-nt —	2			1200 200 200 0001	and still see her		Same marker
24-nt —	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d5SICS:d45DMPy	d5SICS:dQL	d5SICS;dEPy	d5SICS:dAPy	d5SICS:dMAPy	d5SICS:dDMAPy
25-nt 🔶	C. C. Maria	460100-420-			201 May 201 400	and 100 500 120	St. 63. 25 55
24-nt — 23-nt —	100	USSICS.UZPy	d5SICS:d3MPy	d5SICS:d4MPy	d5SICS:d5MPy	d5SICS:d34DMPy	d5SICS:d35DMPy
25-nt —	ALC MAN					Sale and the first	
24-nt → 23-nt →	- 25 M	0450MPy.05SICS	dQL:d5SICS	dEPy:d5SICS	dAPy:d5SICS	dMAPy:d5SICS	dDMAPy:d5SICS
	reference					AN AN AN AN	
Clark.		dzPy:d5SICS '	d3MPy:d5SICS	d4MPy:d5SICS	d5MPy:d5SICS	d34DMPy:d5SICS	d35DMPy:d5SICS

Figure S1. Heteropair synthesis and extension screen between pyridyl analogs and d**5SICS** (d**X**:d**Y**, primer:template). Assay conditions were as follows: 40 nM DNA duplex, 0.6 nM Kf, and 5, 20, 100, and 500 μ M d**X**TP + dCTP (from left to right). Reference is natural dA:dT pair with none, 100 μ M dATP, and 100 μ M dATP + dCTP (from left to right). All Reactions were incubated at 25 °C for 5 min. See heteropair synthesis/extension described above for details.

5'-dTAATACGACTCACTATAGGGAGA (X) 3'-dATTATGCTGAGTGATATCCCTCT (Y) GCTAGGTTACGGCAGGATCGC						
X	Y	k _{cat} [min⁻¹]	<i>К</i> _м [µм]	$k_{\text{cat}}/K_{\text{M}}$ [M ⁻¹ min ⁻¹]		
dA	d 45DMPy	4.9 ± 0.4	42 ± 2	1.2 × 10⁵		
dC	d45DMPy	0.34 ± 0.05	89 ± 9	3.9×10^3		
dG	d45DMPy	0.26 ± 0.03	127 ± 5	2.1 × 10 ³		
dT	d45DMPy	11 ± 1	17 ± 2	6.4 × 10 ⁵		

Table S2: Rates of mispair extension.^[a]

[a] See description of steady-state kinetics, above for details.

References.

[1] M. Urban, R. Pohl, B. Klepetárová, M. Hocek, J. Org. Chem. 2006, 71, 7322-7328.

- [2] G. J. Bridger, R. T. Skerlj, S. Padmanabhan, S. A. Martellucci, G. W. Henson, M. J. Abrams, H. C. Joao, M. Witvrouw, K. De Vreese, R. Pauwels, E. De Clercq, *J. Med. Chem.* **1996**, *39*, 109- 119.
- [3] T. Kaminski, P. Gros, Y. Fort, Eur. J. Org, Chem. 2003, 3855-3860.
- [4] O. Sugimoto, M. Mori, K. Moriya, K. Tanji, Helv. Chim. Acta 2001, 84, 1112-1118.
- [5] W. Wierenga, H. I. Skulnick, Carbohydrate Res. 1981, 90, 41-52.